

It is interesting to compare the structures of the "unsaturated" cluster $H_4Re_4(CO)_{12}$ with that of the "saturated" cluster $H_4Ru_4(CO)_{12}$. In $H_4Ru_4(CO)_{12}$, the prediction that the hydrogens are edge-bridging²³ has been confirmed by a single-crystal structure determination on the derivative $H_4Ru_4(CO)_{11}P(OCH_3)_3$, which shows the presence of four long and two short Ru-Ru distances.24

Acknowledgment. Financial support from the National Science Foundation (Grant No. GP-42943X) is gratefully acknowledged. Computer time was supplied by the University of Southern California Computing Center.

References and Notes

- (1) R. Saillant, G. Barcelo, and H. D. Kaesz, J. Am. Chem. Soc., 92, 5739 (1970)
- (2) EAN refers to the effective atomic number rule, which when applied to metal clusters predicts "closed shell" configurations of 60 electrons for tetrahedral clusters (see H. D. Kaesz, Chem. Brit., 9, 344 (1973)). H4Os4(CO)12 and $H_4Ru_4(CO)_{12}$ are 60-electron clusters [4(1) + 4(8) + 12(2)] and are considered "saturated", while $H_4Re_4(CO)_{12}$, a 56-electron cluster, is considered "unsaturated"
- (3) The infrared spectrum of H₄Re₄(CO)₁₂ showed only two bands in the COstretching region.¹
- (4) M. R. Churchill, P. H. Bird, H. D. Kaesz, R. Bau, and B. Fontal, J. Am. Chem. Soc., 90, 7135 (1968).
- (5) H. D. Kaesz, B. Fontal, R. Bau, S. W. Kirtley, and M. R. Churchill, J. Am. Chem. Soc., 91, 1021 (1969).
- (a) M. R. Churchill and J. Wormald, J. Am. Chem. Soc., 93, 5670 (1971). (b) M. R. Churchill, S. A. Bezman, J. A. Osborn, and J. Wormald, Inorg. Chem., 11, 1818 (1972).
- (7) The crystal was mounted on a glass fiber. The approximate size of the crystal used in data collection was 0.11 × 0.18 × 0.19 mm. An empirical absorption correction was applied, based on the variation of intensity of an axial reflection ($\chi = 90^{\circ}$) with ϕ (T. C. Furnas, "Single Crystal Orienter Instruction Manual", General Electric Co., Milwaukee, Wisc., 1966).
- (8) The major computations in this work were performed using CRYM, an amalgamated set of crystallographic programs developed by Dr. R. E. Marsh and his group at the California Institute of Technology. The spread in Re-Re distances observed here (0.054 Å) is not too unusual.
- In other tetrahedral metal clusters such as $H_4Co_4(C_5H_5)_4$, $Os_4O_4(CO)_{12}$, and $Fe_4(CO)_4(C_5H_5)_4$, differences in M–M distances on the order of 0.03-0.06 Å (corresponding to about 10-20 standard deviations) are commonly found.¹⁰⁻¹² In the cases of H₄Co₄(C₅H₅)₄ and Os₄O₄(CO)₁₂ it was suggested that crystal packing forces may be responsible.
 G. Huttner and H. Lorenz, *Chem. Ber.*, **108**, 973 (1975).
- D. Bright, Chem. Commun., 1169 (1970).
- (12) M. A. Neuman, Trinh-Toan, and L. F. Dahl, J. Am. Chem. Soc., 94, 3383 (1972)
- (13) G. R. Wilkes, Ph.D. Dissertation, University of Wisconsin, 1965
- (14) E. W. Abel, W. Harrison, R. A. N. McLean, W. C. Marsh, and J. Trotter, Chem. Commun., 1531 (1970).
- (15) V. G. Albano, G. Ciani, M. Manassero, and M. Sansoni, J. Organomet. Chem., 34, 353 (1972).
- (16) A recent tabulation of accurate neutron-diffraction measurements of bridging hydrogen-metal bond lengths (see Table VIIIa in R. A. Love, H. B. Chin, T. F. Koetzle, S. W. Kirtley, B. R. Whittlesey, and R. Bau, J. Am. Chem. Soc., 98, 4491 (1976)) shows that these distances remain relatively constant at values of 1.85-1.89 Å for Mo-H-Mo and W-H-W systems. Assuming approximately equal covalent radii for W and Re, and bearing in mind that x-ray measurements of bond lengths involving hydrogen are often a little shorter than their true values, it is seen that the Re–H(br) distance of 1.75–1.79 Å found here is quite reasonable.
 (17) This runs contrary to the observation in H₂Ru₆(CO)₁₈^{6a} that Ru–Ru distances
- associated with hydrogen-capped faces are ~0.09 Å longer than nonbridged Ru-Ru distances
- (18) L. F. Dahl, E. Ishishi, and R. E. Rundle, J. Chem. Phys., 26, 1750 (1957). (19) M. J. Bennett, W. A. G. Graham, J. K. Hoyano, and W. L. Hutcheon, J. Am. Chem. Soc., 94, 6232 (1972).
- (20) M. R. Churchill and S. W. Y. Ni Chang, Inorg. Chem., 13, 2413 (1974).
- (21) J. P. Olsen, T. F. Koetzle, S. W. Kirtley, M. Andrews, D. L. Tipton, and R.

Bau, J. Am. Chem. Soc., 96, 6621 (1974).

- (22) The actual configuration of the H₄Re₄ core in H₄Re₄(CO)₁₂ is of course significantly distorted from the idealized cubic structure drawn in VI. In reality, the HRe3 unit is much more coplanar: in other words, the H···H distances are much shorter than the Re----Re distances.
- (23) (a) H. D. Kaesz, S. A. R. Knox, J. W. Koepke, and R. B. Saillant, Chem. Commun., 477 (1971); (b) S. A. R. Knox and H. D. Kaesz, J. Am. Chem. Soc., 93, 4594 (1971).
- (24) Preliminary crystallographic results on H₄Ru₄(CO)₁₁P(OCH₃)₃ (unit cell $P\overline{1}$ (triclinic); a = 13.69, b = 9.13, c = 11.26 Å; $\alpha = 116.0$, $\beta = 93.2$, $\gamma = 97.1^{\circ}$; Z = 2) show the following values for the Ru–Ru distances: 2.94, 2.94, 2.92, 2.92, 2.76, 2.76 Å. Presumably, the four long distances represent Ru-H-Ru bridge bonds and the two short distances (which are opposite each other) represent unbridged Ru-Ru bonds.
- (25) Alfred P. Sloan Fellow, 1974-1976. NIH Career Development Awardee, 1975-80.

Robert D. Wilson, Robert Bau*25

Department of Chemistry, University of Southern California Los Angeles, California 90007 Received January 30, 1976

Mechanism of the Olefin Metathesis Reaction. 4.1 Catalyst Precursors in Tungsten(VI) Based Systems

Sir:

Tungsten hexachloride is the most common transition metal reagent used in catalyst recipes for the olefin metathesis reaction. Using this compound as an invariant reagent in our own mechanistic study of the metathesis reaction, we had encountered difficulties in reproducing the level of catalyst activity.^{1–3} In attempts to minimize variability in catalyst activity we sought high purity in solvents and reagents and a reaction atmosphere free of water and oxygen. With such experimental precautions, we discovered that WCl₆, in combination with different alkylmetal compounds, is *inactive* at 25° as a catalyst precursor in the metathesis reaction at least for acyclic internal olefins. Reactions conducted identically except allowing for entry of trace amounts of air were catalytically active. We demonstrate below that WOCl₄ is an active catalyst precursor for metathesis of internal olefins under conditions in which oxygen and water are rigorously excluded and that the catalyst ligand requirements in tungsten(VI)-based systems include chlorine and oxygen atoms. Additionally, we have established that the WOCl₄- $C_2H_5AlCl_2$ system⁴ is an especially distinctive catalyst because of its high activity, long lifetime, and minimal tendency to promote olefin isomerization and solvent alkylation side reactions.

Literature descriptions of metathesis experiments on WCl₆-based systems typically refer to syringe-septum techniques.⁵ This procedure would appear to provide good but not total exclusion of atmospheric oxygen and water. To standardize our experimental procedures, we had sought to minimize all potential sources of oxygen. Solvent (benzene) and olefin (*cis*-2-pentene) were dried by reflux over CaH_2 and Na, respectively, distilled under N₂, and stored over activated⁶ alumina. Tungsten hexachloride⁷ was purified by careful sublimation⁸ to remove the ubiquitous WOCl₄ and WO₂Cl₂ impurities. Reagents were stored, and reaction solutions were then prepared, in an inert atmosphere chamber maintained at <5 ppm oxygen and water.9 Reactions were conducted either (A) in the inert atmosphere chamber or (B) in glass vessels, tightly capped with new rubber septa and under positive nitrogen pressure, that were "out" on the laboratory bench. Investigated as the initiating (alkylating) reagents were $C_2H_5AlCl_2$, $Zn(CH_3)_2$, and LiC_4H_9 . In procedure A, with rigorous oxygen exclusion, these recipes were inactive as olefin metathesis catalysts (a low level of activity observed for the LiC₄H₉ system is ascribed to the known presence of small quantities of lithium butoxide¹¹). In procedure B, the "careful" experimental condition, all metathesis recipes were active and the earlier established activity series of Al > Li > Zn prevailed

under these conditions. Especially significant was the observation of variability in activity and the presence of induction periods. These phenomena are attributed to a variable rate of air entry into the reaction mixture during mixing of the reagents and subsequent diffusion through the septa during reaction. Clearly then, WCl₆ is not a catalyst precursor in acyclic olefin metathesis. Activation of the WCl₆ systems may be achieved by oxygen impurities in reagents or solvents or by ingress of air to the reaction flask whereby W-O bonds are formed through hydrolysis of W-Cl bonds or oxidation of W-alkyl bonds (formed rapidly¹² at 25° from the interaction of WCl₆ and the alkylating agent) or M-alkyl bonds.

It is undesirable to rely upon the use of nonrigorous experimental techniques to produce catalytically active mixtures since the variability of such techniques from one trial to another, much less among different researchers, will make quantitative comparisons of metathesis reactions impossible. The addition of oxygen or oxygen containing species can be quantified, however, and there are several examples of such treatment in the literature. For example, pretreatment of WCl₆ with 1 equiv of C_2H_5OH before addition of $C_2H_5AlCl_2$ produces a highly active catalyst.^{5b} This pretreatment, which enhances the solubility of the tungsten complex, causes a change in the solution color from dark blue to red and the formation of oxytungsten chlorides.^{13,14} In our hands, this system is highly catalytically active though short lived² even under conditions of rigorous exclusion of all other oxygen containing species. Similarly, we have established that use of carefully purified¹⁵ WOCl₄ directly with C₂H₅AlCl₂ as a coreagent⁴ produces a catalyst which is highly active with or without rigorous exclusion of oxygen and water and quantitatively (equilibration time of 2-pentane metathesis) equal to or slightly more active than the corresponding ethanol-modified WCl₆ system. Equilibration times of less than 2 min were observed with C₂H₅AlCl₂:WOCl₄ ratios of ¹/₂, 1, 2, and 4 (and olefin:catalyst = 500) with only trace amounts of isomerization or alkylation side reactions in experiments with low Al:W ratios.¹⁶ Under similar conditions, WO₂Cl₂ and WO₃ showed only slight activity over a 24 h period or short-lived activity (WOCl₄ "impurity" in the WO₂Cl₂).

Catalyst life of the very active WCl₆-based catalyst recipes is short² under "careful" (procedure B) conditions. We found the catalyst life of the WOCl₄- $C_2H_5AlCl_2$ system to be long: metathesis rate was undiminished after 9 h under conditions of rigorous oxygen exclusion (procedure A). In contrast, this system underwent substantial loss of activity within 1 h under "careful" conditions (procedure B). Clearly, traces of oxygen or water greatly affect catalyst life. Similar results were obtained with the heterogeneous WOCl₄-C₄H₉Li system which has an initial activity never before realized for such a system (equilibration of 2-pentene metathesis in 5 min at BuLi:WOCl₄ = 1 and olefin:catalyst = 50).¹⁷ In the C₄H₉Li and Zn(CH₃)₂ (vide infra) based WOCl₄ recipes, the optimal RM/W ratios are one-half those reported⁵ for the WCl₆ recipes.

Perhaps the only drawback to these systems is that reaction is so rapid as to preclude accurate monitoring in the early (preequilibrium) stages of the reaction, a desirable feature in some studies.¹⁸ For such studies, a WOCl₄-Zn(CH₃)₂ catalyst can be used effectively. This inhomogeneous system (at $Zn(CH_3)_2$: WOCl₄ = 0.5 and olefin: catalyst = 50) reaches in procedure A or B ca. 80% of the equilibrium values for 2pentene metathesis in 1 h (roughly the life of the catalyst), permitting convenient sampling after only a few percent reaction.

We have recently found a new catalytic metathesis system that is fully homogeneous and especially suited to mechanistic studies by NMR techniques since both starting materials contain conveniently monitored hydrogen resonances. The essential reagent in this new system is either $W(OCH_3)_6$ or $WO(OCH_3)_4$, compounds that have solubility in aromatic solvents. Reaction of $W(OCH_3)_6$ with $C_2H_5AlCl_2$ in benzene solution yields a colorless to pale yellow solution that catalyzes the metathesis of olefins. Rigorous exclusion of water and oxygen did not detectably impair the catalytic efficiency of this system. However, *chlorine must be present* in the reagent mixture; $W(OCH_3)_6$ or $WO(OCH_3)_4$ in combination with $Al(CH_3)_3$, $Al(C_2H_5)_3$, C_4H_9Li , or $Zn(CH_3)_2$ did not yield a metathesis catalyst. Therefore, both chlorine and oxygen ligand atoms are essential in these W(VI) based catalysts for high metathesis activity for internal olefins at 25°.

Acknowledgment. We gratefully acknowledge support of this research by the National Science Foundation.

References and Notes

- M. T. Mocella, M. A. Busch, and E. L. Muetterties, J. Am. Chem. Soc., 98, 1283 (1976).
- (2) E. L. Muetterties and M. A. Busch, J. Chem. Soc., Chem. Commun., 754 (1974).
- E. L. Muetterties, Inorg. Chem., 14, 951 (1975).
- (4) This recipe was first reported by J-L. Herisson, Y. Chauvin, N. H. Phung, and G. Lefebvre, C.R. Acad. Sci., Ser. C, 269, 661 (1969).
 (5) For example: (a) H. R. Menapace, N. A. Maly, J. L. Wang, and L. G. Wide-
- man, J. Org. Chem., 40, 2983 (1975); (b) N. Calderon, E. A. Oafstead, J. P. Ward, W. A. Judy, and K. W. Scott, *J. Am. Chem. Soc.*, **90**, 4133 (1968); (c) P. R. Marshall and B. J. Ridgewell, *Eur. Polym. J.*, **5**, 29 (1969); (d) V. M. Kothari and J. J. Tazuma, *J. Org. Chem.*, **36**, 2951 (1971): (e) H. Hocker and F. R. Jones, Makromol. Chem., 161, 251 (1972).
- Heated in vacuo at 200°

- (a) Hoated and the row Alfa Inorganics.
 (b) J. Wang and H. R. Menapace, *J. Org. Chem.*, **33**, 3794 (1968).
 (c) Absence of detectable reaction with Zn(C₂H₅)₂ vapor.¹⁰
 (c) D. F. Shriver, "The Manipulation of Air Sensitive Compounds", McGraw-Hill, New York, N.Y., 1969, p 181.
- (11) Ca. 3% of the total base concentration (Gilman double titration).
 (12) M. T. Mocella and E. L. Muetterties, unpublished observation.
- (13) N. Calderon, Acc. Chem. Res., 5, 127 (1972).
- (14) Promotion of metathesis activity by oxygen has been reported for a WCI6-based catalyst (Y. Uchida, M. Hidai, and T. Tatsumi, Bull. Chem. Soc. Jpn., 45, 1158 (1972); however, there has been no previous report of oxygen as an essential ingredient in such reactions. Oxygen promotion of metathesis activity has also been observed for a system based on W(CO)₅P(C₆H₅)₃ (J. M. Bassett, G. Coudurier, R. Muten, and H. Praliand, J. Catai., 34, 152 (1974)) as well as for a supported catalyst (R. L. Burwell, Jr., and A. Brenner, J. Mol. Catal., 1, 77 (1976)). It has also been suggested that the function of the oxygen is to increase the Lewis acidity of the alkylmetal compound used: J. M. Basset, Y. B. Taarit, G. Coudurier, and H. Praliand, J. Organomet. Chem., 74, 167 (1974).
- (15) Vacuum (sealed tube) sublimation of a commercial sample (Alfa Inorganics).
- (16) The question of homogeniety of this WOCI4-C2H5AICI2 catalyst is not resolved. The reaction system was less deeply colored than the analogous WCI₆ system and seemed homogeneous for \sim 10 min after which time solids were visually observed.
- (17) The literature value for 2-pentene equilibration using C₄H₉Li-WCl₆ (2:1 and olefin/catalyst = 50) is 4 h.⁸
- (18) For example: (a) T. J. Katz and J. McGinnis, J. Am. Chem. Soc., 97, 1592 (1975); (b) R. H. Grubbs, P. L. Bork, and D. D. Carr, ibid., 97, 3265 (1975).

M. T. Mocella, R. Rovner, E. L. Muetterties*

Department of Chemistry, Cornell University Ithaca, New York 14853 Received March 29, 1976